
HIGH SPEED NAT64
WITH P4

RIPE #81
2020-10-27

Nico Schottelius

Motivation

● Only 0.39 /8s (or ca. 6.5 million IPv4 addresses) available world wide
● More than ⅓ IPv6 traffic at Google
● Need to bridge the gap

Motivation: IPv4 depletion & IPv6 rise

From https://ipv4.potaroo.net/, 2020-10-27 From https://www.google.com/intl/en/ipv6/statistics.html, 2020-10-27

https://ipv4.potaroo.net/
https://www.google.com/intl/en/ipv6/statistics.html

Key Technologies

IPv6 and IPv4
● IPv6 and IPv4 are incompatible

○ Ethernet type: 0x86dd vs. 0x0800
○ Address sizes: 128 Bit vs. 32 Bit
○ Header format
○ Checksum

● Translation methods
○ Higher level, protocol dependent (“proxying”)
○ NAT64

NAT64: Overview
● Translation on IP level
● Steps

○ Adjust lower level (Ethernet) protocol
○ Change IPv4 <-> IPv6 headers
○ Adjust higher level (TCP/UDP/ICMP/ICMP6) protocol checksum

P4

P4 Targets
● BMV2

○ Software emulation
○ Fast prototyping
○ Checksum over payload support

● NetFPGA
○ P4->PX->HDL->Bitstream
○ Near line speed processing
○ No payload checksum support

P4 Language
● Protocol independent
● Target independent: same code, different line speed

○ BMW2 and NetFPGA

● Parsing of well defined fields

P4 NAT64 Design
● Same P4 design for both targets

○ Same checksum code

● No functions on NetFPGA
○ Using #defines

P4 Network design: In-network translation

Address resolution: ARP/NDP
● IPv4: ARP: separate protocol; no checksum; Broadcast
● IPv6: NDP: IPv6 only; checksum; Multicast
● ICMP6 option list of 64 bit blocks

NAT64 Translation: From IPv6 to IPv4
● IPv6 host sends packet to 2001:db8:cafe::192.0.2.2
● P4 switch table matches on 2001:db8:cafe::/96 (nat64 prefix)
● P4 switch calls nat64 action

○ nat64 action adds IPv4 header, maps IPv6 source and destination address
○ nat64 action removes IPv6 header

● NAT64 P4 switch deparsers/sets egress port

2001:db8:cafe::192.0.2.2 == 2001:db8:cafe::c000:202

NAT64 Translation: Directions matter

Stateless vs. Stateful NAT64
● Stateless

○ Usually 1:1 mappings
○ Static mappings

● Stateful
○ Usually 1:n mappings
○ Session table
○ Active controller required

NAT64: Checksum changes
● Used in TCP, UDP, ICMP, ICMP6

○ Includes payload

● P4/NetFPGA
○ No support for checksum over payload

● Internet checksum: “Sum of 1’s complements”
○ Solution: Calculate differences

Delta Checksum in P4
● Example: UDP: IPv6 to IPv4

○ v4sum = v4_src_addr + v4_dst_addr + (totalen-20) + protocol
○ v6sum = v6_src_addr + v6_dst_addr + payloadlen + next_header
○ udpchecksum = udpchecksum + v4sum - v6sum

Results

Results: NAT64 TCP Benchmark
● Measured and tested with iperf

Tayga 2.35-3.34 Gbit/s

Jool 7.18-8.25 Gbit/s

P4/NetFPGA 8.51-9.29 Gbit/s

Performance measurements with iperf, 190 seconds, 10 second warmup
time, 1-50 parallel sessions, 3 repetitions; min / max values shown

Conclusion and outlook
● NAT64 successfully implemented on 2 P4 targets
● Jool surprisingly fast
● P4/NetFPGA: research only target
● Many P4 improvements possible - even a P4OS?

